久久精品免费一区二区三区-久久精品免费一区二区视-久久精品免观看国产成人-久久精品免看国产-久久精品免看国产成-久久精品免视看国产陈冠希

Your Position: Home > News > Industry News

Single Transformer Proteins May Play a Role in Cancer

2012/8/1??????view:

  A new study led by scientists at The Scripps Research Institute (TSRI) and St. Jude Children's Research Hospital shows how a protein involved in cancer twists and morphs into different structures. The research focuses on a protein named nucleophosmin (NPM1). The protein has many functions and may interfere with cells' normal tumor suppressing ability when mutated. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    "We're studying basic biophysics, but we believe the complexity and rules we uncover for the physics of protein disorder and folding could one day also be used for better designs of therapeutics," said Ashok Deniz, Ph.D., associate professor at TSRI.


    The study (“Asymmetric Modulation of Protein Order-Disorder Transitions by Phosphorylation and Partner Binding”), published in Angewandte Chemie, focuses  on the nucleophosmin (NPM1) protein, which has many functions and, when mutated, has been shown to interfere with cells' normal tumor suppressing ability. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    Previous research led by study collaborators Richard Kriwacki, Ph.D., and Diana Mitrea, Ph.D., at St. Jude had demonstrated that a section of NPM1, called the N-terminal domain (Npm-N), doesn't have a defined, folded structure. Instead, the protein morphs between two forms: a one-subunit disordered monomer and a five-subunit folded pentamer.


    Until now, the mechanism behind this transformation was unknown, but scientists believed this monomer-pentamer equilibrium could be important for the protein's location and functioning in the cell. To shed light on how this transformation occurred, Dr. Deniz and his colleagues used a combination of three techniques—single-molecule biophysics, fluorescence resonance energy transfer (FRET), and circular dichroism, which enabled them to study individual molecules and collections of molecules. Single-molecule methods are especially useful for such studies because they can uncover important information that remains hidden in conventional studies.


    The researchers found that the transformation can proceed through more than one pathway. In one pathway, the transformation begins when the cell sends signals to attach phosphoryl groups to NPM1. Such phosphorylation prompts the ordered pentamer to become disordered and likely causes NPM1 to shuttle outside the cell's nucleus. A meeting with a binding partner can mediate the reverse transformation to a pentamer.


    When NPM1 does become a pentamer again under these conditions, which likely causes it to move back to the nucleolus, it takes a different path instead of just retracing its earlier steps.


    Priya Banerjee, Ph.D., an American Heart Association-supported postdoctoral research associate at TSRI and the first author of the study, compared these complicated transitions to the morphing of a "Transformers" toy, where a robot can become a car and then a jet. "Phosphorylation and partner-binding are like different cellular switches driving these changes," said Dr. Banerjee.


    According to Dr. Banerjee, the new study also reveals many intermediate states between monomer and pentamer structures and that these states can be manipulated or "tuned" by changing conditions such as salt levels, phosphorylation, and partner binding, which may explain how cells regulate the protein's multiple functions. The researchers said future studies could shed more light on the biological functions of these different structures and how they might be used in future cancer therapies.


    The team added that combining the three techniques used in this study, plus a novel protein-labeling technique for single-molecule fluorescence, could be a useful strategy for studying other unstructured, "intrinsically disordered proteins" (IDPs), which are involved in a host of cellular functions, as well as neurodegenerative disease, heart disease, infectious disease, type 2 diabetes and other conditions.  

主站蜘蛛池模板: 午夜日韩视频 | 人妻少妇精品视中文字幕国语 | 日本α级毛片视频免费观看 | 天天干天天色 | 91麻豆精品 | 国产婷婷一区二区三区 | 手机视频在线观看 | 在线看一区| 国产特级片 | 92午夜影院 | 国产av电影区二区三区曰曰骚网 | 亚洲日韩国产一区二区三区 | 亚洲日本欧美综合在线一 | 国产综合久久久久久鬼色 | 9热在线精品视频观看 | 亚洲国产精品第一区二区三区 | 91天堂素人精品系列网站 | 六月激情综合 | 欧美成人免费视频一级 | 无码日韩精品一区二区免费 | 国产精品久久久久久福利 | 免费黄动漫网站 | 久久永久免费人妻精品直播 | 亚洲av无码国产精品色午夜 | 九九啪| 日本特级毛片 | 日韩在线一区视频 | 免费男人添女人下身视频高清 | 日韩手机专区 | 国产成人亚洲日韩欧美 | 四虎影视国产精品婷婷 | 99精品国产兔费观看66 | 国产一区国产二区国产三区 | 韩国精品无码少妇在线观看 | 国产成人永久免费视 | 一级做人免费观看c欧美网站 | 久操综合在线 | 毛片网页| 亚洲国产成人精品无码区在线网站 | 亚洲视频在线精品 | 国内精品久久久久久99蜜桃 |